$> 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(4-Methoxyphenyl)-1-(4-methylphenyl)-1H-pyrazol-3-ol

Yong-Feng Sun, Hong-Sheng Jia, Shan Liu and Hong-Jun Zhu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Naniing 210009, People's Republic of China Correspondence e-mail: zhuhj@njut.edu.cn

Received 23 June 2007; accepted 28 June 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.077; wR factor = 0.225; data-to-parameter ratio = 15.2.

The asymmetric unit of the title compound, $C_{17}H_{16}N_2O_2$, contains two crystallographically independent molecules, with methylphenyl and methoxyphenyl substituents in different orientations with respect to the pyrazole ring. In the crystal structure, intermolecular O-H···N and C-H···O hydrogen bonds link the molecules; the $O-H \cdots N$ bonds generate centrosymmetric dimers, and these are connected by C-H...O bonds to generate one-dimensional double-stranded chains.

Related literature

For bond-length data, see: Allen et al. (1987). For related literature, see: Masahiko & Kazuvoshi (1999); Zhu et al. (2004).

Experimental

Crystal data C17H16N2O2 $M_r = 280.32$

Triclinic, $P\overline{1}$ a = 9.2520 (19) Å

b = 10.160 (2) Å	Z = 4
c = 16.338 (3) Å	Mo $K\alpha$ radiation
$\alpha = 90.72 (3)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 91.97 (3)^{\circ}$	T = 298 (2) K
$\gamma = 107.34 (3)^{\circ}$	$0.40 \times 0.10 \times 0.10$ mm
V = 1464.7 (6) Å ³	
Data collection	
Enraf–Nonius CAD-4	5754 independent reflections
diffractometer	2899 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.056$
(North et al., 1968)	3 standard reflections
$T_{\rm min} = 0.975, \ T_{\rm max} = 0.990$	frequency: 120 min
6130 measured reflections	intensity decay: none
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.077$	379 parameters
$wR(F^2) = 0.225$	H-atom parameters constrain
	ri atom parameters constrain

379 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

S = 1.09

5754 reflections

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1E\cdots N1^{i}$	0.85	1.88	2.702 (5)	164
O3−H3C···N3 ⁱⁱ	0.82	1.91	2.728 (5)	175
$C18-H18B\cdots O1^{i}$	0.96	2.50	3.380 (7)	152

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z.

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2281).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Masahiko, T. & Kazuvoshi, Y. (1999). Japanese Patent 11 060 559.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Zhu, H.-J., Wang, D.-D. & Ma, J. (2004). Acta Cryst. E60, o2144-o2146.

Acta Cryst. (2007). E63, o3397 [doi:10.1107/S1600536807031686]

5-(4-Methoxyphenyl)-1-(4-methylphenyl)-1H-pyrazol-3-ol

Y.-F. Sun, H.-S. Jia, S. Liu and H.-J. Zhu

Comment

In the process of synthesis, we obtained the title compound, (I), and we herein report its crystal structure.

The asymmetric unit of the title compound, (I), contains two crystallographically independent molecules, with methylphenyl and methoxyphenyl substituents in different orientations with respect to the pyrazole ring (Fig. 1). The bond lengths and angles are generally within normal ranges (Allen *et al.*, 1987).

The rings A (N1/N2/C8—C10), B (C2—C7), C (C11—C16) and A' (N3/N4/C25—C27), B' (C19—C24), C' (C28—C33) are, of course, planar and they are oriented at diheral angles of A/B = 53.93 (2)°, A/C = 39.63 (3)°, B/C = 64.37 (2)° and A'/B' = 45.45 (2)°, A'/C' = 48.66 (3)°, B'/C' = 51.98 (3)°.

In the crystal structure, intermolecular O—H···N and C—H···O hydrogen bonds (Table 1) link the molecules, in which O—H···N bonds generate the centrosymmetric dimers, and they are connected by C—H···O bonds to generate one-dimensional double-stranded chains (Fig. 2).

Experimental

For the preparation of the title compound, (I), 5-(4-Methoxyphenyl)-1-p -tolylpyrazolidin-3-one, (II), was firstly prepared and recrystallized from ethanol, according to the literature method (Masahiko & Kazuyoshi, 1999). Then, compound (II) (4.2 g, 15 mmol) was dissolved in dimethyl- formamide (100 ml) and mixed with FeCl₃ (0.3 g, 1.5 mmol) (Zhu *et al.*, 2004). The mixture was heated to 353 K and maintained at that temperature for 1 h, and then stirred for 12 h without heating. The reaction mixture was then poured into water (500 ml). The precipitate which formed was filtered off, washed with water and dried under reduced pressure. The crude product was then crystallized from ethanol to give (I) (yield; 2.8 g, 10 mmol). Crystals of (I) suitable for X-ray analysis were grown by slow evaporation of a solution in acetic ether at room temperature about 7 d.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.2 for aromatic H, and x = 1.5 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

5-(4-Methoxyphenyl)-1-(4-methylphenyl)-1H-pyrazol-3-ol

Crystal data	
$C_{17}H_{16}N_2O_2$	Z = 4
$M_r = 280.32$	$F_{000} = 592$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.271 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Melting point: 515 K
a = 9.2520 (19) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 10.160 (2) Å	Cell parameters from 25 reflections
c = 16.338 (3) Å	$\theta = 9-12^{\circ}$
$\alpha = 90.72 \ (3)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 91.97 \ (3)^{\circ}$	T = 298 (2) K
$\gamma = 107.34 \ (3)^{\circ}$	Needle, colorless
$V = 1464.7 (6) \text{ Å}^3$	$0.40\times0.10\times0.10~mm$
Data collection	
Enraf-Nonius CAD-4 diffractometer	$R_{\rm int} = 0.056$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.3^{\circ}$
T = 298(2) K	$h = -11 \rightarrow 11$

l = 0→20 3 standard reflections every 120 min intensity decay: none

 $k = -12 \rightarrow 12$

5754 independent reflections 2899 reflections with $I > 2\sigma(I)$

6130 measured reflections

Absorption correction: ψ scan

 $\omega/2\theta$ scans

(North *et al.*, 1968) $T_{\min} = 0.975, T_{\max} = 0.990$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.077$	H-atom parameters constrained
$wR(F^2) = 0.225$	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 2.P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\text{max}} = 0.002$
5754 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
379 parameters	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.3812 (4)	0.3092 (3)	0.4980 (3)	0.0922 (13)
H1E	0.4660	0.3544	0.5206	0.111*
O2	-0.4318 (4)	0.4092 (4)	0.2242 (2)	0.0857 (11)
N1	0.3451 (4)	0.5152 (4)	0.4561 (3)	0.0688 (11)
N2	0.2291 (4)	0.5472 (4)	0.4138 (2)	0.0651 (11)
C1	0.3833 (6)	1.1069 (5)	0.3103 (4)	0.0936 (18)
H1B	0.4116	1.1693	0.3568	0.140*
H1C	0.3011	1.1249	0.2797	0.140*
H1D	0.4684	1.1197	0.2760	0.140*
C2	0.3336 (5)	0.9587 (5)	0.3397 (3)	0.0626 (12)
C3	0.2867 (5)	0.8513 (5)	0.2808 (3)	0.0646 (13)
H3A	0.2808	0.8708	0.2255	0.078*
C4	0.2493 (5)	0.7155 (5)	0.3057 (3)	0.0639 (13)
H4A	0.2175	0.6435	0.2673	0.077*
C5	0.2593 (5)	0.6883 (5)	0.3867 (3)	0.0611 (12)
C6	0.3034 (5)	0.7945 (5)	0.4455 (3)	0.0662 (13)
H6A	0.3060	0.7753	0.5010	0.079*
C7	0.3429 (5)	0.9281 (5)	0.4198 (4)	0.0709 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H7A	0.3770	0.9997	0.4585	0.085*
C8	0.2978 (6)	0.3788 (5)	0.4612 (3)	0.0725 (14)
C9	0.1579 (5)	0.3230 (5)	0.4217 (3)	0.0740 (14)
H9A	0.1031	0.2301	0.4164	0.089*
C10	0.1164 (5)	0.4329 (5)	0.3919 (3)	0.0663 (13)
C11	-0.0252 (5)	0.4331 (5)	0.3476 (3)	0.0617 (12)
C12	-0.0911 (5)	0.3309 (5)	0.2886 (3)	0.0726 (14)
H12A	-0.0419	0.2663	0.2754	0.087*
C13	-0.2264 (5)	0.3234 (5)	0.2498 (3)	0.0763 (15)
H13A	-0.2710	0.2515	0.2126	0.092*
C14	-0.2975 (5)	0.4228 (5)	0.2658 (3)	0.0670 (13)
C15	-0.2348 (6)	0.5255 (6)	0.3244 (4)	0.0844 (17)
H15A	-0.2834	0.5907	0.3373	0.101*
C16	-0.0983 (5)	0.5290 (5)	0.3634 (3)	0.0760 (15)
H16A	-0.0547	0.5993	0.4017	0.091*
C17	-0.5285 (6)	0.4835 (7)	0.2533 (4)	0.101 (2)
H17A	-0.6190	0.4625	0.2188	0.151*
H17B	-0.4771	0.5806	0.2523	0.151*
H17C	-0.5547	0.4576	0.3084	0.151*
O3	0.5366 (4)	0.9271 (4)	-0.1042(2)	0.0901 (12)
H3C	0.4917	0.9760	-0.0826	0.135*
O4	1.2470 (4)	0.5589 (4)	0.0961 (2)	0.0795 (10)
N3	0.6276 (4)	0.9259 (4)	0.0300 (2)	0.0618 (10)
N4	0.7377 (4)	0.8768 (4)	0.0654 (2)	0.0609 (10)
C18	0.8710(7)	0.9521 (6)	0.4095 (3)	0.0938 (18)
H18A	0.9787	0.9828	0.4203	0.141*
H18B	0.8286	0.8649	0.4348	0.141*
H18C	0.8269	1.0186	0.4315	0.141*
C19	0.8381 (5)	0.9361 (5)	0.3186 (3)	0.0607 (12)
C20	0.9493 (5)	0.9620 (5)	0.2624 (3)	0.0629 (12)
H20A	1 0497	0.9923	0.2817	0.076*
C21	0.9209 (5)	0.9459 (5)	0 1793 (3)	0.0586 (12)
H21A	1.0001	0.9647	0.1435	0.070*
C22	0 7713 (5)	0 9008 (4)	0 1499 (3)	0.0532 (11)
C23	0.6570 (5)	0.8759 (5)	0 2060 (3)	0.0597 (12)
H23A	0.5563	0.8462	0.1870	0.072*
C24	0.6890 (5)	0.8938 (5)	0.2871(3)	0.072 0.0687 (13)
H24A	0.6099	0.8775	0.3229	0.082*
C25	0.6305 (6)	0.8974 (5)	-0.0495(3)	0.062
C26	0.7356 (6)	0.8242 (5)	-0.0640(3)	0.0691 (13)
H26A	0 7548	0.7895	-0 1141	0.083*
C27	0.8022 (5)	0.8151 (5)	0.0092 (3)	0.0593(12)
C28	0.0022(5)	0.0191(5) 0.7482(5)	0.0092(3)	0.0575(12)
C29	1 0511 (5)	0 7743 (5)	-0.0123(3)	0.0696 (13)
H29A	1 0642	0.8343	-0.0559	0.083*
C30	1 1634 (5)	0.7144 (5)	0.0070 (3)	0.0706 (14)
H30A	1 2509	0.7346	-0.0227	0.085*
C31	1 1442 (5)	0.6256 (5)	0.0699 (3)	0.0602 (12)
C32	1.0140(5)	0.5950 (5)	0.1143(3)	0.0602(12)
0.52	1.0110 (0)	0.0000 (0)	0.1110 (0)	5.0025(12)

H32A	1.0013	0.5335	0.1570	0.075*
C33	0.9034 (5)	0.6563 (5)	0.0946 (3)	0.0574 (11)
H33A	0.8161	0.6357	0.1246	0.069*
C34	1.3763 (5)	0.5759 (6)	0.0480 (4)	0.0854 (17)
H34A	1.4398	0.5259	0.0718	0.128*
H34B	1.4321	0.6721	0.0465	0.128*
H34C	1.3443	0.5413	-0.0067	0.128*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.060 (2)	0.061 (2)	0.148 (4)	0.0090 (18)	-0.023 (2)	0.020 (2)
02	0.057 (2)	0.087 (3)	0.109 (3)	0.018 (2)	-0.025 (2)	-0.006 (2)
N1	0.053 (2)	0.059 (3)	0.091 (3)	0.012 (2)	-0.013 (2)	0.006 (2)
N2	0.052 (2)	0.052 (2)	0.087 (3)	0.0116 (19)	-0.018 (2)	0.003 (2)
C1	0.078 (4)	0.059 (3)	0.135 (5)	0.007 (3)	0.003 (4)	0.000 (3)
C2	0.039 (2)	0.054 (3)	0.094 (4)	0.013 (2)	-0.002 (2)	-0.002 (3)
C3	0.047 (3)	0.072 (3)	0.076 (3)	0.021 (2)	0.000 (2)	-0.004 (3)
C4	0.050 (3)	0.062 (3)	0.079 (3)	0.019 (2)	-0.011 (2)	-0.018 (3)
C5	0.047 (3)	0.060 (3)	0.075 (3)	0.015 (2)	-0.008 (2)	-0.002 (3)
C6	0.068 (3)	0.064 (3)	0.066 (3)	0.019 (3)	-0.006 (2)	-0.008 (3)
C7	0.057 (3)	0.053 (3)	0.100 (4)	0.015 (2)	-0.010 (3)	-0.017 (3)
C8	0.058 (3)	0.067 (3)	0.093 (4)	0.021 (3)	-0.016 (3)	0.004 (3)
C9	0.053 (3)	0.061 (3)	0.099 (4)	0.003 (2)	-0.003 (3)	0.004 (3)
C10	0.051 (3)	0.062 (3)	0.083 (3)	0.014 (2)	-0.005 (2)	-0.005 (3)
C11	0.046 (2)	0.065 (3)	0.070 (3)	0.012 (2)	-0.009 (2)	-0.006 (2)
C12	0.057 (3)	0.065 (3)	0.095 (4)	0.020 (3)	-0.010 (3)	-0.008 (3)
C13	0.057 (3)	0.065 (3)	0.102 (4)	0.014 (3)	-0.019 (3)	-0.015 (3)
C14	0.048 (3)	0.068 (3)	0.083 (3)	0.017 (2)	-0.011 (2)	0.000 (3)
C15	0.062 (3)	0.081 (4)	0.112 (5)	0.026 (3)	-0.014 (3)	-0.023 (3)
C16	0.053 (3)	0.075 (4)	0.096 (4)	0.016 (3)	-0.017 (3)	-0.022 (3)
C17	0.063 (4)	0.110 (5)	0.136 (6)	0.039 (4)	-0.018 (4)	-0.006 (4)
03	0.100 (3)	0.116 (3)	0.072 (2)	0.064 (3)	-0.023 (2)	-0.017 (2)
O4	0.057 (2)	0.088 (3)	0.102 (3)	0.0357 (19)	0.0013 (19)	0.014 (2)
N3	0.043 (2)	0.072 (3)	0.075 (3)	0.0259 (19)	-0.0095 (18)	-0.007 (2)
N4	0.050 (2)	0.065 (3)	0.068 (3)	0.0202 (19)	-0.0099 (19)	-0.002 (2)
C18	0.092 (4)	0.085 (4)	0.088 (4)	0.005 (3)	-0.019 (3)	-0.004 (3)
C19	0.056 (3)	0.058 (3)	0.068 (3)	0.019 (2)	-0.009 (2)	-0.006 (2)
C20	0.040 (2)	0.071 (3)	0.073 (3)	0.012 (2)	-0.009 (2)	-0.007 (3)
C21	0.044 (2)	0.070 (3)	0.060 (3)	0.015 (2)	-0.005 (2)	-0.002 (2)
C22	0.046 (2)	0.048 (3)	0.064 (3)	0.013 (2)	0.000 (2)	-0.003 (2)
C23	0.039 (2)	0.071 (3)	0.070 (3)	0.018 (2)	-0.003 (2)	-0.001 (2)
C24	0.051 (3)	0.087 (4)	0.066 (3)	0.017 (3)	0.006 (2)	0.002 (3)
C25	0.067 (3)	0.073 (3)	0.058 (3)	0.028 (3)	-0.011 (2)	-0.006 (2)
C26	0.070 (3)	0.085 (4)	0.054 (3)	0.026 (3)	0.000 (2)	-0.010 (3)
C27	0.048 (3)	0.059 (3)	0.071 (3)	0.015 (2)	0.003 (2)	-0.010 (2)
C28	0.048 (3)	0.054 (3)	0.071 (3)	0.015 (2)	0.004 (2)	0.001 (2)
C29	0.064 (3)	0.071 (3)	0.079 (3)	0.027 (3)	0.013 (3)	0.013 (3)

C30	0.048 (3)	0.065 (3)	0.102 (4)	0.022 (2)	0.012 (3)	0.007 (3)
C31	0.050 (3)	0.054 (3)	0.076 (3)	0.017 (2)	-0.007(2)	-0.006 (2)
C32	0.050 (3)	0.064 (3)	0.073 (3)	0.018 (2)	0.002 (2)	0.001 (2)
C33	0.046 (2)	0.059 (3)	0.067 (3)	0.014 (2)	0.000 (2)	0.000 (2)
C34	0.051 (3)	0.089 (4)	0.117 (5)	0.025 (3)	-0.005 (3)	-0.007 (3)
Geometric para	motors (Å °)					
Geometric purur	neiers (A,)			~		/-:
01—C8		1.327 (5)	03-	C25	1.3	25 (5)
O1—H1E		0.8500	03-	–H3C	0.8	200
02—C14		1.365 (5)	04-	C31	1.3	82 (5)
O2—C17		1.420 (6)	04-	C34	1.4	23 (6)
N1—C8		1.328 (6)	N3-	C25	1.3	29 (6)
NI—N2		1.378 (5)	N3-	-N4	1.3	74 (5)
N2—C10		1.344 (6)	N4-		1.3	55 (5)
N2—C5		1.454 (6)	N4-	C22	1.4	07 (5)
C1—C2		1.526 (7)	C18		1.5	02 (7)
CI—HIB		0.9600	C18	—HI8A	0.9	600
CI—HIC		0.9600	C18	-HI8B	0.9	600
CI—HID		0.9600	C18	-H18C	0.9	600
C2—C7		1.356 (7)	C19		1.3	72 (6)
$C_2 = C_3$		1.403 (6)	C19		1.3	95 (6) 72 (6)
C3—C4		1.388 (6)	C20		1.3	72 (6)
C3—H3A		0.9300	C20	—H20A	0.9	300
C4—C5		1.360 (6)	C21		1.3	88 (6)
C4—H4A		0.9300	C21	—H2IA	0.9	300
C_{3}		1.392 (0)	C22		1.3	91 (0) 46 (6)
C_{0}		1.372(7)	C23	—C24 Ц22 А	1.5	40 (0) 200
C0—H0A		0.9300	C23	—п23А Н24А	0.9	300
C^{*}		1 282 (6)	C24		0.9	12 (6)
C_{0} C_{10}		1.382 (0)	C25		1.4	13 (0) 44 (6)
С9—Н9А		0.9300	C20	—027 —H264	0.0	44 (0) 300
C10_C11		1 475 (6)	C20		0.9	80 (6)
C10—C16		1.475 (0)	C28		1.4	86 (6) 86 (6)
C11-C12		1.302 (6)	C28		1.3	89 (6)
C12-C13		1.352 (0)	C28		1.3	82 (6)
C12—H12A		0.9300	C29	—H29A	0.9	300
C12 - C14		1 387 (6)	C30		13	56 (6)
C13—H13A		0.9300	C30	—H30A	0.9	300
C14—C15		1 385 (7)	C31		13	84 (6)
C15—C16		1 385 (6)	C32		1.3	79 (6)
C15—H15A		0.9300	C32	—Н32А	0.9	300
C16—H16A		0.9300	C33	—Н33А	0.9	300
C17—H17A		0.9600	C34	—H34A	0.9	600
C17—H17B		0.9600	C34	—H34B	0.9	600
С17—Н17С		0.9600	C34	—Н34С	0.9	600
C8-01-H1F		118 4	C25	—03—H3C	100) 5
$C_{14} = 0^{2} = C_{17}^{17}$		118.8 (4)	C31	-04-C34	116	5 (4)
02 01/		110.0(7)	051	51 057	110	··• (')

C8—N1—N2	104.5 (4)	C25—N3—N4	104.2 (4)
C10—N2—N1	111.3 (4)	C27—N4—N3	111.7 (4)
C10—N2—C5	130.5 (4)	C27—N4—C22	129.9 (4)
N1—N2—C5	116.9 (4)	N3—N4—C22	118.4 (4)
C2—C1—H1B	109.5	C19-C18-H18A	109.5
C2—C1—H1C	109.5	C19-C18-H18B	109.5
H1B—C1—H1C	109.5	H18A—C18—H18B	109.5
C2—C1—H1D	109.5	C19—C18—H18C	109.5
H1B—C1—H1D	109.5	H18A—C18—H18C	109.5
H1C—C1—H1D	109.5	H18B—C18—H18C	109.5
C7—C2—C3	119.4 (5)	C20-C19-C24	116.3 (4)
C7—C2—C1	122.0 (5)	C20-C19-C18	123.2 (4)
C3—C2—C1	118.4 (5)	C24—C19—C18	120.6 (5)
C4—C3—C2	119.4 (5)	C21—C20—C19	123.8 (4)
С4—С3—НЗА	120.3	C21—C20—H20A	118.1
С2—С3—НЗА	120.3	C19—C20—H20A	118.1
C5—C4—C3	119.7 (5)	C20—C21—C22	118.5 (4)
С5—С4—Н4А	120.1	C20-C21-H21A	120.8
C3—C4—H4A	120.1	C22—C21—H21A	120.8
C4—C5—C6	121.1 (5)	C21—C22—C23	118.5 (4)
C4—C5—N2	120.7 (4)	C21—C22—N4	120.2 (4)
C6—C5—N2	118.2 (4)	C23—C22—N4	121.3 (4)
C7—C6—C5	118.5 (5)	C24—C23—C22	121.4 (4)
С7—С6—Н6А	120.8	C24—C23—H23A	119.3
С5—С6—Н6А	120.8	С22—С23—Н23А	119.3
C2—C7—C6	121.8 (5)	C23—C24—C19	121.5 (5)
С2—С7—Н7А	119.1	C23—C24—H24A	119.2
С6—С7—Н7А	119.1	C19—C24—H24A	119.2
N1—C8—O1	122.1 (4)	O3—C25—N3	122.1 (4)
N1—C8—C9	111.5 (4)	O3—C25—C26	126.8 (4)
O1—C8—C9	126.3 (5)	N3—C25—C26	110.9 (4)
C10—C9—C8	105.9 (5)	C27—C26—C25	105.9 (4)
С10—С9—Н9А	127.1	С27—С26—Н26А	127.0
С8—С9—Н9А	127.1	С25—С26—Н26А	127.0
N2—C10—C9	106.8 (4)	C26—C27—N4	107.2 (4)
N2-C10-C11	124.3 (4)	C26—C27—C28	129.7 (4)
C9—C10—C11	128.9 (5)	N4—C27—C28	123.1 (4)
C16—C11—C12	117.6 (4)	C29—C28—C33	117.1 (4)
C16—C11—C10	122.6 (4)	C29—C28—C27	121.0 (4)
C12—C11—C10	119.8 (4)	C33—C28—C27	121.9 (4)
C13—C12—C11	121.3 (5)	C30—C29—C28	122.2 (5)
C13—C12—H12A	119.3	С30—С29—Н29А	118.9
C11—C12—H12A	119.3	С28—С29—Н29А	118.9
C12—C13—C14	120.0 (5)	C31—C30—C29	119.2 (5)
C12—C13—H13A	120.0	С31—С30—Н30А	120.4
C14—C13—H13A	120.0	С29—С30—Н30А	120.4
O2—C14—C15	123.4 (5)	C30—C31—O4	125.4 (4)
O2—C14—C13	116.7 (5)	C30—C31—C32	120.7 (4)
C15—C14—C13	119.8 (4)	O4—C31—C32	114.0 (4)

C14—C15—C16	118.5 (5)	C33—C32—C31	119.5 (5)
C14—C15—H15A	120.7	С33—С32—Н32А	120.2
C16—C15—H15A	120.7	C31—C32—H32A	120.2
C11—C16—C15	122.6 (5)	C32—C33—C28	121.3 (4)
C11—C16—H16A	118.7	С32—С33—Н33А	119.4
C15—C16—H16A	118.7	С28—С33—Н33А	119.4
O2-C17-H17A	109.5	O4—C34—H34A	109.5
O2—C17—H17B	109.5	O4—C34—H34B	109.5
H17A—C17—H17B	109.5	H34A—C34—H34B	109.5
O2-C17-H17C	109.5	O4—C34—H34C	109.5
H17A—C17—H17C	109.5	H34A—C34—H34C	109.5
H17B—C17—H17C	109.5	H34B—C34—H34C	109.5
C8—N1—N2—C10	-1.7 (6)	C25—N3—N4—C27	-2.3 (5)
C8—N1—N2—C5	-169.9 (4)	C25—N3—N4—C22	175.2 (4)
C7—C2—C3—C4	0.6 (7)	C24—C19—C20—C21	-1.4 (7)
C1—C2—C3—C4	176.4 (4)	C18—C19—C20—C21	178.9 (5)
C2—C3—C4—C5	-0.4 (7)	C19—C20—C21—C22	0.1 (7)
C3—C4—C5—C6	1.5 (7)	C20—C21—C22—C23	0.8 (7)
C3—C4—C5—N2	-176.4 (4)	C20-C21-C22-N4	-177.1 (4)
C10—N2—C5—C4	-45.2 (7)	C27—N4—C22—C21	42.1 (7)
N1—N2—C5—C4	120.3 (5)	N3—N4—C22—C21	-134.9 (4)
C10—N2—C5—C6	136.8 (5)	C27—N4—C22—C23	-135.7 (5)
N1—N2—C5—C6	-57.7 (6)	N3—N4—C22—C23	47.2 (6)
C4—C5—C6—C7	-2.7 (7)	C21—C22—C23—C24	-0.4 (7)
N2-C5-C6-C7	175.3 (4)	N4—C22—C23—C24	177.5 (4)
C3—C2—C7—C6	-2.0 (7)	C22—C23—C24—C19	-1.0 (8)
C1—C2—C7—C6	-177.5 (5)	C20-C19-C24-C23	1.8 (7)
C5—C6—C7—C2	3.0 (7)	C18—C19—C24—C23	-178.5 (5)
N2—N1—C8—O1	179.6 (5)	N4—N3—C25—O3	178.5 (4)
N2—N1—C8—C9	1.7 (6)	N4—N3—C25—C26	3.1 (5)
N1-C8-C9-C10	-1.0 (7)	O3—C25—C26—C27	-178.1 (5)
O1-C8-C9-C10	-178.9 (5)	N3-C25-C26-C27	-2.9 (6)
N1—N2—C10—C9	1.1 (6)	C25—C26—C27—N4	1.4 (6)
C5—N2—C10—C9	167.2 (5)	C25—C26—C27—C28	179.2 (5)
N1—N2—C10—C11	178.4 (4)	N3—N4—C27—C26	0.5 (5)
C5-N2-C10-C11	-15.4 (8)	C22—N4—C27—C26	-176.6 (4)
C8—C9—C10—N2	-0.1 (6)	N3—N4—C27—C28	-177.5 (4)
C8—C9—C10—C11	-177.2 (5)	C22—N4—C27—C28	5.3 (7)
N2-C10-C11-C16	-38.6 (8)	C26—C27—C28—C29	50.0 (7)
C9—C10—C11—C16	138.1 (6)	N4—C27—C28—C29	-132.4 (5)
N2-C10-C11-C12	142.9 (5)	C26—C27—C28—C33	-129.5 (6)
C9—C10—C11—C12	-40.4 (8)	N4—C27—C28—C33	48.1 (7)
C16-C11-C12-C13	-2.2 (8)	C33—C28—C29—C30	-1.1 (7)
C10-C11-C12-C13	176.3 (5)	C27—C28—C29—C30	179.4 (5)
C11—C12—C13—C14	3.2 (8)	C28—C29—C30—C31	0.7 (8)
C17—O2—C14—C15	-13.9 (8)	C29—C30—C31—O4	-179.7 (4)
C17—O2—C14—C13	163.2 (5)	C29—C30—C31—C32	0.1 (7)
C12—C13—C14—O2	179.5 (5)	C34—O4—C31—C30	-6.1 (7)
C12—C13—C14—C15	-3.4 (8)	C34—O4—C31—C32	174.2 (4)

O2-C14-C15-C16 C13-C14-C15-C16 C12-C11-C16-C15	179.5 (5) 2.6 (8) 1.5 (8)	C30—C31—C32—C33 O4—C31—C32—C33 C31—C32—C33—C28		-0.5 (7) 179.3 (4) 0.1 (7)
C10-C11-C16-C15	-177.0 (5)	C29—C28—C33—C32		0.6 (7)
C14—C15—C16—C11	-1.7 (9)	C27—C28—C33—C32		-179.8 (4)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1E…N1 ⁱ	0.85	1.88	2.702 (5)	164
O3—H3C···N3 ⁱⁱ	0.82	1.91	2.728 (5)	175
C18—H18B····O1 ⁱ	0.96	2.50	3.380 (7)	152
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $-x+1$, $-y+2$, $-z$.				

